Building reliable and secure embedded systems

March 20, 2012


Secure embedded systems
A product can also be stable yet lack security. For example, an office printer is the kind of product most of us purchase and use without giving a minute of thought to security. The software in the printer may be bug-free, but is it able to prevent a would-be eavesdropper from capturing a remote electronic copy of everything you print, including your sensitive financial documents?

Secure systems are robust in the face of persistent attack. Secure systems are able to keep hackers out by design. One key strategy for building secure systems is to validate all inputs, especially those arriving over an open network connection. For example, security could be added to a printer by ensuring against buffer overflows and encrypting and digitally signing firmware updates.

One of the unfortunate facts of designing secure embedded systems is that the hackers who want to get in only need to find and exploit a single weakness. Adding layers of security is good, but if even any one of those layers remains fundamentally weak, a sufficiently motivated attacker will eventually find and breach that defense. But that's not an excuse for not trying.

For years, the largest printer maker in the world apparently gave little thought to the security of the firmware in its home/office printers, even as it was putting tens of millions of tempting targets out into the world. Now the security of those printers has been breached by security researchers with a reasonable awareness of embedded systems design. Said one of the lead researchers, "We can actually modify the firmware of the printer as part of a legitimate document. It renders correctly, and at the end of the job there's a firmware update. ... In a super-secure environment where there's a firewall and no access--the government, Wall Street--you could send a résumé to print out."

Security is a brave new world for many embedded systems designers. For decades we have relied on the fact that the microcontrollers and flash memory and real-time operating systems and other less mainstream technologies we use will protect our products from attack. Or that we can gain enough "security by obscurity" by keeping our communications protocols and firmware upgrade processes secret. But we no longer live in that world. You must adapt.

Consider the implications of an insecure design of an automotive safety system that is connected to another Internet-connected computer in the car via CAN; or the insecure design of an implanted medical device; or the insecure design of your product.

Too often, the ability to upgrade a product's firmware in the field is the very vector that's used to attack. This can happen even when a primary purpose for including remote firmware updates is motivated by security. For example, as I've learned in my work as an expert witness in numerous cases involving reverse engineering of the techniques and technology of satellite television piracy, much of that piracy has been empowered by the same software patching mechanism that allowed the broadcasters to perform security upgrades and electronic countermeasures. Ironically, had the security smart cards in those set-top boxes had only masked ROM images the overall system security may have been higher. This was certainly not what the designers of the system had in mind. But security is also an arms race.

Like reliability, security must be designed in from the start. Security can't be patched or tested or debugged in. You simply can't add security as effectively once the product ships. For example, an attacker who wished to exploit a current weakness in your office printer or smart card might download his hack software into your device and write-protect his sectors of the flash today so that his code could remain resident even as you applied security patches.
< Previous
Page 2 of 3
Next >

Loading comments...

Parts Search Datasheets.com

KNOWLEDGE CENTER