Deterministic networking: from niches to the mainstream?
Such adaptations to real time and determinism are coming just in time for the broader Internet, which is now increasing being used as the means by which to deliver real time video transmissions to Internet-enabled TVs, smartphones and tablets. For example, virtually every significant Ethernet router/switch manufacturer has incorporated the IEEE 1588 standard into their hardware layer.
Also, as noted in “Understanding IEEE’s determinisitic audio/video bridging standard,” the 1588-based IEEE 802.1 Audio/Video Bridging enhancement to the Ethernet standard is being widely used to deliver time-synchronized, low-latency audio and video while retaining 100% compatibility with Ethernet.
Further contributing to this trend is SyncE, the topic of “Introduction to the Synchronized Ethernet.” Taking a slightly different approach to making the TCP/IP suite more deterministic, this ITU-T standard facilitates the transference of clock signals over the Ethernet physical layer. It is being used widely in applications such as cellular networks, IPTV and VoIP, not to mention such Internet-backbone access technologies as passive optical networks which require something more than traditional Ethernet protocols.
Also not immune to the need for a more deterministic TCP/IP protocol is the new segment of embedded design activity involving in bringing wirelessly connected M2M and Internet-of-Things enabled devices into homes and buildings via new IPv6 Internet protocol extensions such as 6LoWPAN. Ironically, one way developers are looking to satisfy this need for more deterministic operation is the same UDP subset that so occupied embedded developers attention in the late 1990s. Several articles on Embedded.com that chronicle this trend include:
UDP and the embedded wireless IoT
Pub-sub, the IoT and 6LoWPAN connectivity
How to set up a 6LoWPAN network
I do not see this trend toward the incorporation of real time determinism into the broader Internet slowing down. Soon, the deterministic modifications to Ethernet servers and routers that are the backbone of the Internet will move out of the physical layer where they now reside and move into the protocol layer. This trend will be driven not by how humans use the network, but by the needs of the many more embedded and distributed sensors that will be connected.
Where present protocol standards now reflect the response times of humans (one to several seconds), the Internet of the future will be mainly populated and used by devices with response times in the microseconds to the milliseconds. Even now, in the average home, the ratio of devices to humans is on the order of 10:1. In the near future it is virtually certain that most of the devices will be connected.
We live in exciting times. After graduating from Columbia University in the 1970s, I came into the electronics industry only a few years after the introduction of the microprocessor. In each of the decades since. I thought the one I was in was the most exciting ever and that there was nothing that would top it. This decade is no different and has not disappointed me yet. I can’t wait to see what the next few years in this new exciting segment of the industry will bring.
Embedded.com Site Editor Bernard Cole is also editor of the twice-a-week Embedded.com newsletters as well as a partner in the TechRite Associates editorial services consultancy. He welcomes your feedback. Send an email to bccole@acm.org, or call 928-525-9087.
See more articles and column like this one on Embedded.com. Sign up for the Embedded.com newsletters. Copyright © 2013 UBM--All rights reserved.


Loading comments... Write a comment