Advertisement

The Cellular Internet of Things -- Emerging technologies

Olof Liberg, Marten Sundberg, Eric Wang, Johan Bergman, Joachim Sachs

April 24, 2018

Olof Liberg, Marten Sundberg, Eric Wang, Johan Bergman, Joachim SachsApril 24, 2018

Editor's Note: Growing requirements for increased availability of IoT devices coincide with the emergence of cellular technologies well suited for the IoT. For developers, the need has never been more acute for more detailed information about cellular technologies and their application to the IoT. 

Excerpted from the book, Cellular Internet of Things, this series introduces key concepts and technologies in this arena. In this installment, the authors describe the evolving landscape for cellular and its role in the IoT. 

Elsevier is offering this and other engineering books at a 30% discount. To use this discount, click here and use code ENGIN318 during checkout.

Adapted from Cellular Internet of Things, by Olof Liberg, Marten Sundberg, Eric Wang, Johan Bergman, Joachim Sachs.

 

Chapter 1. Cellular Internet of Things
By Olof Liberg, Marten Sundberg, Eric Wang, Johan Bergman, Joachim Sachs

This chapter introduces the overall content of the book. It contains a brief introduction to the massive Machine-Type Communications (mMTC) category of use cases, spanning a wide range of applications such as smart metering and wearables. When discussing these applications, special attention is given to the service requirements associated with mMTC, for example, in terms of reachability, throughput, and latency. The chapter continues and introduces the concept of the Cellular Internet of Things (CIoT) and the three technologies Extended Coverage Global System for Mobile Communications Internet of Things (EC-GSM-IoT), Narrowband Internet of Things (NB-IoT), and Long-Term Evolution for Machine-Type Communications (LTE-M) that can be said to define this concept. While EC-GSM-IoT and LTE-M are backward compatible solutions based on GSM and LTE, respectively, NB-IoT is a brand new radio access technology.

The final part of the chapter looks beyond the set of cellular access technologies and introduces the Low Power Wide Area Network (LPWAN) range of solutions that already have secured a significant footprint in the mMTC market. Unlike the cellular systems, these LPWANs have been designed to operate in licensed exempt spectrum. An initial discussion around the pros and cons of licensed exempt operation is presented to prepare the reader for the final chapters of the book, where a closer look is taken at operation in the unlicensed frequency domain.

1.1 INTRODUCTION

The Internet of Things, commonly referred to as IoT, is the latest rising star in the information and communications technology (ICT) industry and embodies the vision of connecting virtually anything with everything. Cisco estimates that 12 billion devices will be connected by 2020 [1]. Ericsson goes even further in its vision of 18 billion connected devices in 2022 [2]. Regardless of which of these two leading ICT network providers has made the best estimate, the anticipated number of devices is nothing short of dazzling. As a comparison, the total number of mobile cellular subscriptions currently amounts to 7.3 billion [2].

So what is it that will become connected, that is not already connected? Traditional use cases such as connecting utility meters to support, e.g., distribution and billing, will likely increase in numbers. A recent example is the Great Britain Smart Metering Implementation Programme, where the British government has decided to replace 53 million meters in roughly 30 million premises with advanced electricity and gas meters intended to support customers with “near real- time information on their energy consumption” [3]. Similar projects are either in progress or in the planning stages in a majority of the European Union member states [4]. At the same time, new use cases, for example, in the category of Wearables, are gaining momentum with increasing market traction being realized.

When viewed in totality, the overall number of connected devices is already undergoing an exponential growth where connectivity over cellular networks serves as a key enabler for this growth. Between 2015 and 2021, it has been approximated that the volume of devices connected to the Internet via cellular technologies alone will experience a compounded annual growth rate of roughly 25% [1].

This accelerated growth in cellular devices is supported, or perhaps driven, by the recent work performed by the Third Generation Partnership Project (3GPP) standards development organization in Release 13 of its featured technologies. 3GPP has already been responsible for standardization of the GSM (2G), UMTS (3G), and LTE (4G) radio access technologies. The early development and evolution of these technologies has mainly been driven by traditional service requirements defined by voice and mobile broadband services. In the past couple of years, new requirements for machine connectivity have emerged in support of the IoT and transformed the process of standards evolution into what can be seen as a fast-moving revolution. Accordingly, the designs of GSM and LTE have been rethought, and a new radio access technology dedicated to supporting the IoT has been developed, resulting in three new CIoT technologies becoming globally available within a very short time frame. The mission of this book is to introduce, characterize, and, when relevant, in detail describe these three new technologies known as EC-GSM-IoT, NB-IoT, and LTE-M.


Continue reading on page two >>

 

< Previous
Page 1 of 2
Next >

Loading comments...