ESC Boston: Robots could extend satellite missions - Embedded.com

ESC Boston: Robots could extend satellite missions

Of the approximately 5000 satellites launched since the dawn of the space age, only 1000 are operating now. That’s because when satellites break or run out of fuel, they’re simply thrown away.

As deputy program manager of NASA’s Satellite Servicing Capabilities Office, Benjamin Reed leads a team working to create an era of re-use, assembly, and servicing to get more out of our satellites, and at ESC Boston on Thursday he laid out the plan to make that happen.

The cost of launching something into space is a major factor in the way satellites are designed. The median satellite costs about $250 million to build and almost half that to launch, so each one is carefully designed to be very reliable and takes years to build. That also comes at a cost.

“Every satellite is technologically obsolete the day it launches,” said Reed. “The paradigm of getting into space drives how we build satellites.”

The Hubble Space Telescope, launched April 24, 1990, is unique because it’s the only satellite that was designed to be serviced. In 1993, astronauts were able to repair a mirror and install new instruments.

“We used servicing as a force multiplier to get more value out of that initial launch,” said Reed.

The Hubble service success led to the creation of Reed’s team with a mission to design robots to service other satellites. They’re now working on technology to extend life, upgrade, and assemble satellites in space.

“The coup de grâce technology that we are looking for is the ability to assemble a satellite, an observatory large enough to find life on another planet,” said Reed.

The Restore-L servicer is the product of the SSCO vision, and it is set to launch in 2019 on a mission to service NASA’s Landsat 7 earth observation satellite.

“[Landsat] 7 is running out of fuel and may not last until Landsat 9 is launched, so we are going to use that as our candidate for this first servicing mission,” said Reed.


Artist's concept of Restore-L approaching Landsat 7. Source : NASA

The mission has five main technologies: relative navigation system, servicing avionics, robot arm and software, tool drive system and tools, and propellant transport systems. It will also have a unique set of challenges including tracking down a satellite in space going 16,500 mph and maneuvering the servicer to rendezvous with it.

“The autonomous rendezvous portion is incredibly difficult,” said Reed. “We need to match rates with it in three degrees of freedom, but we need to match its orientation in three degrees of freedom, so it’s a six degree of freedom problem.”

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.