European networking project selects winners - Embedded.com

European networking project selects winners

LONDON — The Embedded WiseNts project, which has brought together twelve partners from ten different European countries, to explore the potential wireless sensor networks consisting of multiple objects, each capable of simple sensing, actuation, communication and processing, has recognized three pieces of research.

As part of the project, the participants organised a competition, the ‘Sentient Future Competition’, that invited research groups to suggest innovative future applications for CO (Cooperating Objects) technology. Seventy-nine entries were received, and three applications have been awarded prizes.

First prize was awarded to the Catholic University of Rio de Janeiro in Brazil, for its application ‘Large-scale body sensing for infectious disease control’. The Brazilian researchers foresaw an animal health monitoring system which would enable cattle ranchers to monitor the health of cattle herds and their susceptibility to infection. The system could measure the glucose, toxin and temperatures of individual animals on a daily basis, and if unusual symptoms were detected that animal could be isolated from the rest of the herd.

The second prize was won by students at the University of Zurich and ETH Zurich for a proposed intelligent waste management system, BIN-IT, which saw typical consumer goods such as fast-food packaging, tetra packs, bottles, jam jars, tins and batteries fitted with standardised RFID tags in the factory when they are produced. Waste bins and recycling collection points would be equipped with RFID tag readers and writers. The readers could monitor the volume of certain types of waste being deposited and feed this information to municipal waste organisations, while the writers could award credits to larger-scale waste producers such as restaurants that are members of a recycling scheme.

Third prize went to a PhD student in the U.K.’s Lancaster University, for his vision of a congestion-free road traffic system in which vehicles are able to cooperate with each other to negotiate a clear space along their intended route. The system would function on the basis of ‘virtual vehicle slots’, which would guarantee a space and minimum safety distance for each vehicle along its traffic lane. Other vehicles not yet assigned virtual slots would have to avoid a particular slot by changing lanes or increasing speed.

The Embedded WiseNts project partners are focusing on the development of Wireless Sensor Networks (WSN) and their applications, especially in the form of Cooperating Objects (CO), to help develop a roadmap for innovative future applications. Their objective is to gain a broad vision of embedded wireless networks in the future (+/- 10 years), what their requirements would be and what technical progress is needed to this end.

The current situation in four key areas will be looked at including typical application scenarios, algorithms used for routing, service-discovery; the vertical system functions that impact on several software layers, such as security, context and location management, exception handling; and the system architecture and programming models, how to develop middleware that could be used for cooperating objects in applications, hardware interfaces, industry applications.

Pedro Marrón of the University of Stuttgart, said, “One of the first things we noticed is that most applications out there at the moment are very application specific. Which means that one key area we must address is that of adaptation. There is a distinct need for a middleware layer to cope with the diversity of software layers.”

“We have a big issue in energy-aware software, for example,” he continues. “When you have lots of small cooperating objects everywhere, you cannot keep stopping to change the batteries. So we need better energy efficiency both in hardware and software, and that can be either better batteries or algorithms that are more power-aware, that can turn off the radio module in the software, say, when it is not in use. As this will affect many software layers, we need to have cross-layer information.”

While systems designers are working on areas like energy-efficient hardware and software algorithms right now, Marrón believes that these issues and others even more important, such as security and authentication, will remain important issues for the next ten years.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.