There are many microcontrollers and associated modules vying to become the basis of Internet of Things (IoT) designs, but many industrial applications need the performance that only a full-fledged microprocessor can provide. Such processors need operating systems to run their feature-rich applications code. Now Microchip is making the design of such powerful IoT systems easier with a new system-on-module (SoM) that clears the path for bringing mainline Linux to the IoT.
From the designer’s point of view, there are considerable differences between using a microcontroller (MCU) and a microprocessor (MPU) as a product’s foundation. Because microcontrollers lack integral system and program memory as well as peripherals, for instance, these vital resources must appear on the PCB as separate components. Their presence, in turn, greatly complicates development as designers are forced to deal with signal integrity and routing issues for high-speed connections to things like DDR memory and gigabit Ethernet physical layers (PHY). For industrial applications, in which long product life is essential, using peripheral and memory devices that must be drawn from an ever-evolving consumer market complicates component sourcing as well.
Software development can be equally challenging. MPU-based designs typically require the use of an operating system (OS) to facilitate the creation and maintenance of application code. But finding developers experienced with proprietary code can be challenging. Having the ability to use an industrialized version of the ubiquitous Linux would be an advantage.
With its introduction of the ATSAMA5D27 SoM, Microchip is addressing all of these issues. The SoM is based on the SAMA5D2 system-in-package (SiP), which integrates a Cortex-A5 processor with up to 1 Gb of DDR2 memory to eliminate the need for manual impedance matching. The module combines the SiP with Flash memory, boot EEPROM, Ethernet PHY, and power management chips onto a PCB to further reduce the designer’s task. The module has soldering pads located on the edge, allowing developers to simply drop the SoM onto a four-layer PCB and have all of the difficult design issues resolved.
You must verify your email address before signing in. Check your email for your verification email, or enter your email address in the form below to resend the email.
Please confirm the information below before signing in.
{* #socialRegistrationForm *}
{* firstName *}
{* lastName *}
{* displayName *}
{* emailAddress *}
By clicking "Sign In", you confirm that you accept our terms of service and have read and understand privacy policy.
{* /socialRegistrationForm *}
Almost Done
Please confirm the information below before signing in. Already have an account? Sign In.