New manufacturing process helps metals lose weight - Embedded.com

New manufacturing process helps metals lose weight

LONDON — A new manufacturing process, partly funded by The Engineering and Physical Sciences Research Council, is being developed that can turn titanium, stainless steel and many other solid metals into parts that have a tiny lattice-like structure, similar to scaffolding but with poles twice the diameter of a human hair, making them ultra-light. Because loads are channelled along the poles, the parts can comprise up to 70% air while remaining strong enough to perform correctly.

The first commercial-scale system for the rapid manufacture of these components is now being developed by engineers at the University of Liverpool, in collaboration with MCP (Mining and Chemical Products) Ltd and funded by the Engineering and Physical Sciences Research Council (EPSRC).

The components could replace solid metal in integrated circuits, automotive applications and many other fields of engineering. Aircraft parts, for example, could be produced that are over 50% lighter than conventional alternatives. Using a technique known as selective laser melting (SLM), this automated system builds up components, layer by layer, from fine metal powders using an infra-red laser beam to melt the powders into the required structure. Layers can be as thin as 25 microns, making it possible to produce complex parts in which thermal, impact-absorption and other properties can be distributed in specific places to meet the requirements of particular applications.

The system can manufacture components designed for use wherever heat is generated and needs to be removed quickly. Such parts might include the heat sinks that cool the processor chips in personal computers. The lattice in these heat sinks can be designed to facilitate heat flow and deliver increased cooling rates, resulting in improved chip reliability and fewer PC crashes. Although other ways of making some types of latticed metals exist, they do not enable the features of the lattice to be precisely ‘designed in’ to meet customised requirements. The metals they produce are also limited in their usefulness because they have to be machined into the final required shape, rather than ‘built for purpose’ step by step.

The project is building on previous EPSRC-funded work carried out over the last six years by the University of Liverpool team, which is led by Dr Chris Sutcliffe. Dr Sutcliffe said, “There is worldwide interest in developing a standard rapid manufacturing process based on SLM. Our system will produce optimised engineering components that can’t be made in any other way and will give the industry that has supported us a significant advantage in future markets.”

The three-year project ‘Rapid Manufacture of Industrially Relevant Hierarchical Structures’ is receiving total EPSRC funding of nearly £450,000, plus £200,000 from industrial partners Osprey Metals Ltd, Stryker Orthopaedics and MCP (Mining & Chemical Products) Ltd.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.