New Samsung H-Cube 2.5D technology integrates 6 HBMs for HPC applications - Embedded.com

New Samsung H-Cube 2.5D technology integrates 6 HBMs for HPC applications

H-Cube applies advanced 2.5D silicon interposer technology and hybrid-substrate structure, allowing efficient integration of 6 HBMs, and lowering barriers to entry in the HPC/AI market.

Samsung Electronics announced its hybrid-substrate cube (H-Cube) technology, a 2.5D packaging solution specialized for semiconductors for HPC, AI, data center, and network products that require high-performance and large-area packaging technology.

Jointly developed by Samsung Electro-mechanics (SEMCO) and Amkor Technology, H-Cube is suited to high-performance semiconductors that need to integrate a large number of silicon dies. Samsung said that it expands and enriches the foundry ecosystem, providing various package solutions to address challenges its customers are facing.

“In today’s environment where system integration is increasingly required and substrate supplies are constrained, Samsung Foundry and Amkor Technology have successfully co-developed H-Cube to overcome these challenges,” said JinYoung Kim, senior vice president of global R&D center at Amkor Technology. “This development lowers barriers to entry in the HPC/AI market and demonstrates successful collaboration and partnership between the foundry and outsourced semiconductor assembly and test (OSAT) company.”

H-Cube structure and features

2.5D packaging enables logic chips or high-bandwidth memory (HBM) to be placed on top of a silicon interposer in a small form factor. Samsung’s H-Cube technology features a hybrid substrate combined with a fine-pitch substrate which is capable of fine bump connection, and a high-density interconnection (HDI) substrate, to implement large sizes into 2.5D packaging.

Samsung’s H-Cube technology features a hybrid substrate combined with a fine-pitch substrate which is capable of fine bump connection, and a high-density interconnection (HDI) substrate, to implement large sizes into 2.5D packaging. (Source: Samsung Electronics)

With the recent increase in specifications required in the HPC, AI, and networking application market segments, large-area packaging is becoming important as the number and size of chips mounted in one package increases or high-bandwidth communication is required. For attachment and connection of silicon dies including the interposer, fine-pitch substrates are essential but prices rise significantly following an increase in size.

When integrating six or more HBMs, the difficulty in manufacturing the large-area substrate increases rapidly, resulting in decreased efficiency. Samsung solved this problem by applying a hybrid substrate structure in which HDI substrates that are easy to implement in large-area is overlapped under a high-end fine-pitch substrate.

By decreasing the pitch of solder ball – which electrically connects the chip and the substrate – by 35% compared to the conventional ball pitch, the size of fine-pitch substrate can be minimized, while adding HDI substrate (module PCB) under the fine-pitch substrate to secure connectivity with the system board.

In addition, to enhance the reliability of the H-Cube solution, Samsung applied its proprietary signal/power integrity analysis technology that can stably supply power while minimizing the signal loss or distortion when stacking multiple logic chips and HBMs.


Related Contents:

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.